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Methods based on variance components are powerful tools for linkage analysis of quantitative traits, because they
allow simultaneous consideration of all pedigree members. The central idea is to identify loci making a significant
contribution to the population variance of a trait, by use of allele-sharing probabilities derived from genotyped
marker loci. The technique is only as powerful as the methods used to infer these probabilities, but, to date, no
implementation has made full use of the inheritance information in mapping data. Here we present a new imple-
mentation that uses an exact multipoint algorithm to extract the full probability distribution of allele sharing at
every point in a mapped region. At each locus in the region, the program fits a model that partitions total phenotypic
variance into components due to environmental factors, a major gene at the locus, and other unlinked genes.
Numerical methods are used to derive maximum-likelihood estimates of the variance components, under the as-
sumption of multivariate normality. A likelihood-ratio test is then applied to detect any significant effect of the
hypothesized major gene. Simulations show the method to have greater power than does traditional sib-pair analysis.
The method is freely available in a new release of the software package GENEHUNTER.

The recent explosion in genetic-mapping data has placed
a premium on the development of nonparametric meth-
ods for the detection of linkage to quantitative traits.
The most widely used such method is based on regres-
sion of trait differences between sib pairs on the number
of alleles shared identical by descent (IBD) at a locus
being tested (Haseman and Elston 1972). Because this
approach confines analysis to sib pairs, much inheritance
information in general pedigrees is wasted.

An alternative approach that simultaneously examines
all pedigree relationships has recently been developed
from classical variance-components analysis. The clas-
sical technique simply separates the total variance into
components due to genetic and environmental effects
(Lange et al. 1976). Hopper and Matthews (1982) first
suggested adapting the method to linkage analysis by
modeling an additional variance component for a hy-
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pothesized quantitative-trait locus (QTL) near a marker
site. Linkage to the locus is indicated by a statistically
significant nonzero value for the QTL component. As
an additional benefit, the relative size of the component
gives a measure of the magnitude of the effect of a de-
tected locus.

The earliest versions of this method were based on
analysis of only one or two markers at a time (Goldgar
1990; Schork 1993; Amos 1994). Almasy and Blangero
(1998) improved on this by using an approximation to
a multipoint algorithm. Their method estimates IBD
sharing at arbitrary points along the chromosome, by
means of regression on IBD values at marker loci. Sim-
ulation studies have shown variance-components anal-
ysis to be more powerful than Haseman-Elston regres-
sion (Amos et al. 1996, 1997; Pugh et al. 1997; Williams
et al. 1997; Almasy and Blangero 1998).

Here we present a new implementation of the vari-
ance-components method, which offers the added power
of an exact multipoint approach. Our version builds on
previously developed algorithms for extracting the full
probability distribution of allele sharing across a chro-
mosome (Kruglyak et al. 1996; Kruglyak and Lander
1998). The implementation is freely available in a new
release of the software package GENEHUNTER and
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Figure 1 Pedigree structure used in the power and significance
simulations. Founding members (i.e., those without parents) were as-
sumed to be unavailable for genotyping.

Figure 2 A, Multipoint LOD score profiles, averaged over 200
simulations. The same data were analyzed with both a 1-cM map
(thicker lines) and a 5-cM map (thinner lines) and by both Haseman-
Elston regression (dashed lines) and variance-components (solid lines)
methods. A QTL accounting for 50% of trait variance is located at
50 cM. The same generating values were used as for the first, purely
additive model in table 1. B, Profile of mean variance-component es-
timates for the same simulations (using the 1-cM map), expressed as
a proportion of total variance.

can rapidly analyze general pedigrees of moderate size
(i.e., up to 16 nonfounding members, on current
workstations).

At each chromosome position to be examined, the
quantitative trait X is fitted to the following mixed
model: , where g is a random ef-X = g � G � S b K � ei i i

fect due to a major gene linked to the locus being tested,
G is a random effect due to other genes at unlinked loci,
and e is a residual environmental effect. The bi are fixed
effects, including the population mean as well as re-
gression coefficients for the measured covariates Ki. The
random effects are assumed to be normally distributed
with mean 0 and variances , , and . The genetic2 2 2j j jg G e

variances can be optionally decomposed into additive
and dominance effects, with and2 2 2 2j = j � j j =g ga gd G

. If we assume that g, G, and e are uncorrelated2 2j � jGa Gd

with each other, then the total trait variance is 2j �ga

. (The model can also be readily ex-2 2 2 2j � j � j � jgd Ga Gd e

tended to include interactions between effects, as well
as multiple trait-affecting loci.)

The trait covariance between any two pedigree mem-
bers can be expressed as a weighted sum of the variance
components:

( )Cov X , Xi j

2 2 2 2 2j � j � j � j � j if i = jga gd Ga Gd e= ,2 2 2 2{p j � d j � 2F j � D j if i ( jij ga ij gd ij Ga ij Gd

where Xi and Xj are the trait values of the ith and jth
relatives. Each genetic variance component is weighted
by an appropriate measure of genetic similarity: pij is
the proportion of alleles at the major locus that are IBD
in the ith and jth relatives (on the basis of genotyping
data); dij is the probability that both alleles at the locus
are IBD (also on the basis of genotyping data); Fij is the
kinship coefficient of relatives i and j, with 2Fij giving
their coefficient of relationship (i.e., the mean probability
that they share alleles IBD, across the entire genome);
and Dij is the expected probability that the relatives share

both alleles IBD (only on the basis of their degree of
relatedness).

If we assume multivariate normality, it is easy to write
an expression for the likelihood of the data in terms of
these variances and covariances:

R1
( )log L = c � log det V[ ]� r2 r=1

R1 ′ �1( ) ( )� X � K b V X � K b ,� r r r r r2 r=1

where Xr is the vector of individual trait values for the
rth pedigree, Vr is the variance-covariance matrix of the
rth pedigree, Kr is the matrix of covariates for the rth
pedigree, R is the number of pedigrees analyzed, and b

is the vector of fixed effects. Parameter values that max-
imize this likelihood are then found by use of Fisher’s
scoring method (Jennrich and Sampson 1976; Lange et
al. 1976). In order to avoid meaningless estimates, the
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Table 1

Parameter Estimates Based on Simulations

TEST

GENERATING VALUES AND MAXIMUM-LIKELIHOOD ESTIMATES OF PARAMETERS

(MEAN � SE)

2jga
2jgd

2jGa
2je m Location (cM)

Additive/additive/normal
Generated 2.0 .0 .0 2.0 4.0 50.0
Estimated 1.95 � .032 Not modeled .097 � .020 1.93 � .023 3.99 � .012 50.2 � .506

Dominance/additive/normal
Generated 1.0 1.0 .0 2.0 4.0 50.0
Estimated 1.39 � .035 Not modeled .033 � .012 2.52 � .030 4.03 � .010 51.5 � .864

Dominance/dominance/normal
Generated 1.0 1.0 .0 2.0 4.0 50.0
Estimated .911 � .046 1.21 � .046 .127 � .028 1.84 � .031 4.00 � .013 50.3 � .919

Additive/additive/Bernoulli
Generated 2.0 .0 .0 2.0 4.0 50.0
Estimated 1.95 � .041 Not modeled .210 � .033 1.98 � .039 4.03 � .013 47.9 � .990

NOTE.—The first part of each model name indicates whether the trait was simulated with a dominance variance component
or with purely additive variance. The second part indicates whether the model used to analyze the data included a dominance
component or only an additive component. The third part indicates the distribution used for the residual environmental variance.
For those simulations without a dominance variance component, the trait means for AA, AB, and BB genotypes at the QTL
were 2.0, 4.0, and 6.0, respectively; for those with a dominance component, the means were 1.6, 5.0, and 5.4, respectively.

Table 2

Power Comparisons Based on Simulations

TEST AND

METHOD

POWER TO DETECT LINKAGE (%) at P =

.05 .01 .001 .0001 .00005

Additive/additive/
normal
VC 100 100 96 83 79
H-E 97 90 49 22 16

Dominance/additive/
normal
VC 100 90 65 36 28
H-E 93 56 21 3 0

Dominance/domi-
nance/normal
VC 99 97 85 60 52
H-E 99 85 44 18 10

Additive/additive/
Bernoulli
VC 100 99 86 64 61
H-E 91 63 18 4 4

NOTE.—Power was defined as the percentage of 100 data sets
in which the appropriate threshold was exceeded. For the Has-
eman-Elston tests and for the variance-components models
without a dominance component, the thresholds used for as-
ymptotic significance levels of .05, .01, .001, .0001, and .00005
were 0.59, 1.17, 2.07, 3.00, and 3.30, respectively. For the
variance-components model with a dominance component, the
corresponding thresholds were 1.30, 2.00, 3.00, 4.00, and 4.30.
The value .00005 is the pointwise significance that corresponds
to a genomewide significance of .05. VC = variance components
method; H-E = Haseman-Elston regression.

variance components are all constrained to have values
�0.

This procedure is carried out at any desired number
of positions along the mapped chromosome. IBD-shar-

ing probabilities for each position are derived from the
exact multipoint algorithms already implemented in
GENEHUNTER (Kruglyak et al. 1996; Kruglyak and
Lander 1998). Linkage to a particular position is de-
tected by taking the ratio of the maximum likelihood to
that of a constrained model in which and are fixed2 2j jga gd

at 0 (i.e., the null hypothesis of no linkage). In the sim-
plest case, in which only is modeled, twice the loge-

2jga

likelihood ratio has an asymptotic distribution that is a
mixture of a variable and a point mass at 0 (Self1 1 2: x12 2

and Liang 1987). The expected distribution of the like-
lihood ratio when more than one variance component
is tested is not well described, but, in general, it continues
to be a mixture of x2 variables (Self and Liang 1987).
For models including both additive and dominance com-
ponents, we have taken a conservative approach and
compared the test statistic to a distribution.2x2

We evaluated the performance of the method on a
series of simulated pedigrees with the structure shown
in figure 1. Of particular interest were the accuracy of
parameter estimates and the power and significance lev-
els, compared with those of sib-pair methods. For each
power test, a total of 1000 pedigrees were simulated,
and 100 replicates, each consisting of 60 pedigrees, were
randomly resampled from this initial set. Marker loci
were simulated every 1 cM on a 100-cM chromosome.
Each marker had four equally frequent alleles, corre-
sponding to a heterozygosity of .75. A QTL with two
equally frequent alleles was located at exactly 50 cM.
Trait alleles were randomly assigned to pedigree foun-
ders and then were randomly segregated to offspring.
Phenotypic values were assigned as follows, on the basis
of genotype at the QTL: AA homozygotes received a
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Table 3

Significance Comparisons Based on Simulations of a Whole-
Genome Scan

METHOD

GENOMEWIDE FALSE-POSITIVE RATE AT

NOMINAL P =a (%)

.05 .01 .001 .0001 .00005

Variance components 100.0 98.3 47.0 9.7 4.7
Haseman-Elston 100.0 84.3 15.7 2.7 .7

a Percentages are of 300 data sets in which the nominal signif-
icance level was exceeded at least once somewhere in the genome.
Data sets were generated under the assumption that there is no
linked trait–influencing locus at any position. The test statistic was
compared with threshold values appropriate for a model without
a dominance component, as given in table 1.

Table 4

Significance Comparisons Based on Simulations of a Single-
Locus Test

METHOD

FALSE-POSITIVE RATE

AT NOMINAL P =a

(%)

.05 .01 .001

Variance components
additive 5.70 .97 .10

Variance components
dominance 1.97 .50 .07

Haseman-Elston 3.60 .67 .07

a Percentages are of 3,000 data sets in which the nominal
significance level was exceeded. Data sets were generated under
the assumption that there is no linked QTL at the locus being
tested. The variance-components method was applied twice to
each data set: once with a model including only an additive
variance component and once with a model including both ad-
ditive and dominance components. Test statistics were compared
with appropriate threshold values, as given in table 1.

mean trait value of , BB homozygotes a mean valuem � a
of , and AB heterozygotes a mean value of .m � a m � d
The additive variance attributable to the QTL is given
by , the dominance variance by22pq [a � d (p � q)]

, where p and q are the frequencies of the A and2 2 24p q d
B alleles, respectively. The parameters a and d were cho-
sen to provide a total QTL-based variance of 2.0. In
some tests, all of this variance was additive and in others
it was equally divided between additive and dominance
components. In addition, a deviate was added to each
value, to provide for environmental variance. This de-
viate was taken either from a normal distribution of
mean 0 and variance 2.0 or from a Bernoulli distribution
in which 10% of individuals received a deviate of 4.24
and 90% a deviate of �0.471. In both cases, the pa-
rameters of the distribution were chosen to give a total
environmental variance of 2.0. Thus, 50% of the total
trait variance was attributable to the QTL.

The same pedigree structure was used for significance
tests, but markers were generated every 2 cM on each
of 23 chromosomes 150 cM in length. This approach
evaluated the expected number of false positives in a
whole-genome scan with a dense genetic map. In addi-
tion, another data set was simulated with only a single
marker, to directly test agreement with the nominal false-
positive rates. Trait values were assigned in the same
manner as for the power tests, except that they were
based on a dummy allele unlinked to any of the marker
loci. For both power and significance tests, the data were
also analyzed by Haseman-Elston regression, by use of
an expectation/maximization algorithm (Kruglyak and
Lander 1995).

The variance-components method provided consis-
tently greater power than did Haseman-Elston regres-
sion (tables 1 and 2 and fig. 2A), with LOD scores higher
by a mean factor of two to three. This was especially
true at the more stringent nominal significance levels
appropriate for whole-genome scans with dense maps
(Lander and Kruglyak 1995). This large difference is
attributable to the great loss of information imposed by

extracting only sib pairs from the pedigrees, compared
with analyzing all pedigree relationships simultaneously.
Power was not greatly affected by use of a strongly non-
normal Bernoulli distribution to generate the environ-
mental deviate. Whereas the Haseman-Elston method
suffered a large drop in power relative to its performance
on data with normal residual variance, the variance-
components method performed nearly as well as it did
on the normal data (table 1).

Estimates of the variance components were good but
generally showed a small downward bias (table 1 and
fig. 2B). This result is similar to earlier findings with a
single-marker approach (Amos 1994; Amos et al. 1996)
and appears to be due to the incorrect attribution of
some variance to polygenic factors. When a trait with
dominance variance was analyzed with a model lacking
a dominance component, the additive component was
inflated by misidentified dominance variance. Location
estimates did not differ significantly from the generating
values.

False-positive rates for whole-genome scans were con-
sistent with expected values (table 3). In particular, the
nominal significance level of .00005, theoretically ex-
pected to correspond to a genomewide significance level
of .05 (Lander and Kruglyak 1995), was exceeded in
4.7% of the simulated genome scans. In contrast, Has-
eman-Elston regression gave a more conservative test
(table 3). Simulations of tests with a single marker were
consistent with these patterns (table 4). In addition, they
showed that the variance-components method is con-
servative when the test statistic is compared with a 2x2

distribution, for models that include both additive and
dominance variance components for the QTL.

The simulation analyses of Allison et al. (1999) found
a similar robustness to the moderate platykurtosis that
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is expected when a trait is influenced by a single major
gene. Their simulations looked only at sib pairs geno-
typed at a single perfectly informative marker. The pre-
sent results extend their findings to larger and more-
complex pedigrees analyzed with partially informative
markers across the entire genome. Although these find-
ings offer encouragement, caution must still be used in
dealing with data that violate the assumption of mul-
tivariate normality. Other kinds of nonnormality (par-
ticularly leptokurtosis and skewness) have been found
to yield excessive false positives, especially in the pres-
ence of high phenotypic correlations among pedigree
members (Allison et al. 1999).

The variance-components method described here has
been incorporated into a new version of the computer
package GENEHUNTER (version 2.0). The program is
freely available at the Whitehead Institute Genome Cen-
ter Web site. This version also includes all linkage-anal-
ysis methods, for quantitative and discrete traits, that
were previously released in MAPMAKER/SIBS (Krug-
lyak and Lander 1995).
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